
Rigid Shape Interpolation Using Normal Equations

William Baxter∗

OLM Digital, Inc.
Pascal Barla†

INRIA Bordeaux University
Ken-ichi Anjyo‡

OLM Digital, Inc.

Figure 1: Rigid Morphing with large rotations: For small enough rotations the “as-rigid-as-possible” technique generates high-quality
interpolations. However, large rotations can lead to inconsistencies that cause artifacts such as those shown here (top). Our technique yields
consistent rotations, resulting in the expected rigid interpolation (bottom).

Abstract

In this paper we provide a new compact formulation of rigid shape
interpolation in terms of normal equations, and propose several en-
hancements to previous techniques. Specifically, we propose 1) a
way to improve mesh independence, making the interpolation re-
sult less influenced by variations in tessellation, 2) a faster way to
make the interpolation symmetric, and 3) simple modifications to
enable controllable interpolation. Finally we also identify 4) a fail-
ure mode related to large rotations that is easily triggered in practi-
cal use, and we present a solution for this as well.

Keywords: npr, interpolation, morphing, in-betweening, least-
squares, Poisson problem

1 Introduction

Two-dimensional morphing and shape interpolation algorithms
have many practical applications. Algorithms for generating 2D
morphs are commonly found in commercial video editing software
such as Adobe After Effects as well as packages for creating web-
oriented or cartoon animations, such as Adobe Flash or Toon Boom.
Animated two dimensional shapes also have applications for real-
time simulation of large crowds [Kavan et al. 2008].

Recently, a variety of new algorithms that preserve rigidity [Alexa
et al. 2000; Sheffer and Kraevoy 2004; Fu et al. 2005; Xu et al.
2005; Sumner et al. 2005] have been introduced. These rigidity-
preserving methods generate interpolations which have a very nat-
ural, almost physical, appearance, and do so in a very efficient
manner, making them suitable for interactive applications. Rigid-
ity preserving interpolation works well and is a very practical way

∗e-mail: baxter@olm.co.jp
†e-mail: pascal.barla@labri.fr
‡e-mail: anjyo@olm.co.jp

to generate high-quality shape interpolations. However there are a
number of limitations in practice which we address here:

• Mesh independence: To the extent possible, the results
should be independent of the tessellation of the underlying
mesh used. This property is lacking in [Gotsman and Surazh-
sky 2001; Surazhsky and Gotsman 2001; Alexa et al. 2000].

• Symmetry: It is often desirable for an interpolation to be
symmetric in its arguments. That is, the vertex paths gen-
erated interpolating from shape A to shape B should be the
same as from B to A. One solution is presented in [Alexa et al.
2000], but it increases the computation load of the algorithm
tremendously.

• Controllability: once the interpolation has been computed, it
is desirable to be able to tweak it in some manner if it does
not generate exactly the animation desired. Controllability
was not addressed in the previous work on rigid interpolation
([Alexa et al. 2000; Xu et al. 2005]).

• Rotational consistency: For large rotations (>180 degrees),
which are common in practical 2D animations, rotational in-
consistencies can occur causing severe artifacts. This affects
both [Alexa et al. 2000] and [Xu et al. 2005].

We provide a solution to each of these issues in this paper. Further-
more, in support of our explanation of these solutions, we provide
an alternate presentation of the mathematics behind rigid interpola-
tion in terms of normal equations. We believe the normal equations
offer a more intuitive formulation, and also make the path to imple-
mentation straightforward. Our derivation follows that of [Alexa
et al. 2000] most closely, since we find it to be the most accessible
and since, similar to that work, we are also primarily interested in
2D. The technique of [Xu et al. 2005] is closely related, however,
and we discuss this connection in Section 3.2.

2 Previous Work

The term “morphing” was introduced by [Beier and Neely 1992] to
describe a combination of image-space warping with cross-dissolve
between pixels. Many other image-space morphing algorithms
were introduced subsequently with many refinements, a good ex-
ample being that of [Lee et al. 1995]. A more complete survey
of image-space moprhing can be found in [Wolberg 1998]. One
problem with image-space morphing algorithms is that they have

pi

vjpk qkqi

qj

vk

pj

vi

AT

BT(t)

Figure 2: Triangle mapping notation: The Jacobian, AT , of the
mapping between two triangles. We define AT (t) to be the desired
interpolated Jacobian at parameter t, and BT (t) to be that actually
obtained by the interpolation.

difficulty handling large relative rotations in an image, resulting in
unnaturally distorted geometry, self-intersections, and/or local ori-
entation reversals (“flips”). It is also difficult to deal with images
where foreground and background should behave differently.

Object-space morphing is an alternative which addresses some of
those issues. A variety of techniques have been presented that op-
erate on both 2D and 3D geometry, e.g. [Gregory et al. 1998;
Lee et al. 1999; Kanai et al. 2000]. A good, though slightly
dated, survey can be found in [Alexa 2002]. Some works have ad-
vanced the state of the art of object space-morphing by guaranteeing
intersection-free solutions to the vertex path problem [Gotsman and
Surazhsky 2001; Surazhsky and Gotsman 2001].

Recently a great deal of attention has focused on methods which
attempt to preserve rigidity, or local differential quantities [Alexa
et al. 2000; Sheffer and Kraevoy 2004; Xu et al. 2005; Fu et al.
2005; Sumner et al. 2005]. These mesh-based object-space algo-
rithms solve a vertex optimization problem to find intermediate
shapes that introduce as little local shear and stretch as possible.
The work of [Schaefer et al. 2006] is unique in that it introduces
an image-space rigidity-preserving deformation method, though it
suffers from several of the same problems of other image space
methods. However, in general, these newer rigidity-preserving, dif-
ferential coordinate methods handle rotations very naturally, pro-
duce low distortion, and maintain a low runtime cost. Nevertheless
there are some issues that remain with these methods, as mentioned
in the introduction, and addressing these issues is the focus of our
work.

Recently we became aware of work by Choi and Szymczak [2003]
by way of [Fu et al. 2005] who also tackled the rotation consistency
problem (called “rotation coherence” in their work) in a manner
very similar to what we propose here. Their work also provides
a detailed proof that the procedure we describe will succeed when-
ever a consistent rotation exists. We offer a small improvement over
their method by taking an additional step to ensure that the rotation
assignment chosen is unique and minimal. On the other hand their
method is slightly more succinct than ours, made so by the elimi-
nation of the special boundary handling step.

3 Background

3.1 “As-rigid-as-possible” interpolation

Alexa et al. [2000] presents rigidity-preserving interpolation as a
quadratic minimization problem. The problem is as follows: given
two meshes P andQ composed of corresponding triangles PT and
QT for T = 1 . . . M , find an interpolation that preserves rigid-
ity. The procedure proposed is the following. For each triangle
pair, compute the Jacobian of the affine transformation that maps
one triangle to the other, AT (Fig. 2), and interpolate these in-

dividual matrices independently to get AT (t), with AT (0) = I
and AT (1) = AT . This is done using a polar decomposition,
and linearly interpolating rotation and shear components indepen-
dently. Specifically, if the polar decomposition of AT is R(α)S,
then AT (t) = R(tα)((1 − t)I + tS), where α is a rotation an-
gle extracted from the orthogonal part of the polar decomposition.
Finally, the key idea is to find intermediate vertex trajectories vi(t)
by minimizing a quadratic error function:

E(t) =

MX
T=1

‖BT (t)−AT (t)‖2 (1)

where ‖·‖ is the Frobenius norm and BT (t) are the transformations
that relate the initial vertices of PT to unknown vertices vi(t).

As explained in [Alexa et al. 2000], by taking the derivative of (1),
setting it to zero, and rearranging all the terms, a linear system of
the form V (t) = −H−1G(t) can be obtained where V (t) is a
vector containing all the unknowns, and H is a constant matrix in-
dependent of t. Though straightforward, the steps required to get
from (1) to the final linear system using direct differentiation are
laborious and yield little insight. Consequently, the intermediate
steps are omitted in [Alexa et al. 2000]. However, by expressing
the problem instead in terms of least squares normal equations, in
Section 4 we are able to provide a complete and succinct end-to-
end derivation that reveals more clearly the structure of the linear
system.

One key aspect of the differential coordinate formulations like
[Alexa et al. 2000; Xu et al. 2005; Sumner et al. 2005] is that
they result in linear systems for which the left hand side (LHS,
here H) is independent of t. Thus the interpolation problem can
be solved very efficiently by LU-decomposing the LHS once for
the whole interpolation, and finding solutions for each given t by
quick LU back-substitution. This advantage is lost, however, when
symmetrizing the cost function as proposed in [Alexa et al. 2000].
In Section 5 we show that a symmetric cost can be achieved with
little additional per-t cost.

3.2 Comparison with Poisson interpolation

Xu et al. [2005] suggest an alternate way to generate rigidity-
preserving interpolations, by solving a Poisson problem on a do-
main mesh. This method is, in fact, nearly identical to that of
[Alexa et al. 2000]. The gradients taken by Xu et al. are those
of the coordinate functions: ∇x(x, y),∇y(x, y). By definition,
these gradients stacked together form the Jacobian. Xu et al. ac-
knowledge this, however, they claim that their solution differs from
that of Alexa et al. in that, in contrast to the Frobenius norm, their
formulation “directly minimizes least squares differences between
[gradient] vectors using the L2 norm”. However, that is precisely
what the Frobenius norm gives as well. There is one difference
between the techniques, however: weighting. Relying on [Tong
et al. 2003], Xu et al. note that their discrete Poisson formulation is
equivalent to finding S that minimizes

P
T aT ‖∇S −G‖2 (Xu et

al. Eq. 10), where aT is the area of triangle PT . In our notation,
BT (t) ≡ ∇S and AT (t) ≡ G, so this is precisely (1) with an addi-
tional weighting factor of aT . If we introduce this weighting in (1)
then, for 2D problems, as-rigid-as-possible interpolation becomes
identical to Poisson shape interpolation. Without the weighting, the
results of Alexa et al. can be seen to depend significantly on the
tessellation (see Figure 3).

Xu et al. made a significant contribution in the form of providing
a more rigorous and general mathematical foundation for rigid in-
terpolation by relating it to the Poisson problem. However, given
that solving the Poisson problem involves second order differential

Figure 3: Tessellation dependence: Formulating interpolation as
unweighted least squares as in (1) leads to tessellation dependence
(middle-left). Area-weighted least squares (3) makes the behavior
more uniform with respect to tessellation (middle-right).

quantities vs. only first order for least squares, and given the rela-
tive complexities of the two approaches, we believe that it is more
logical to formulate rigid interpolation in the manner of Alexa et al.,
as a least squares problem. Furthermore, we feel the interpretation
of Alexa et al. is easier to follow and carries less extraneous mathe-
matical baggage that is not required to understand or implement the
method.

Finally we note that, because the same polar decomposition is used
for extracting and interpolating rotations in both methods, Poisson
shape interpolation (both 2D and 3D) also suffers from the same
rotational inconsistency problems we discuss in Section 7.

4 Area-weighted ARAP interpolation

Next we present a re-formulation of the math of [Alexa et al. 2000],
expressed in terms of normal equations rather than direct minimiza-
tion of quadratic error. The result is the same—mathematically the
two approaches are equivalent. However, the least squares formula-
tion is more succinct, allowing us to enumerate all the steps neces-
sary to arrive at the final linear system. An overview of least squares
and normal equations can be found in Appendix A.

Let AT be the Jacobian of the affine map that relates trianglePT =
{pi, pj , pk} to triangle QT = {qi, qj , qk} (Fig. 2). In terms of x
and y coordinates, AT can be computed as:

AT =

»
px

i − px
k py

i − py
k

px
j − px

k py
j − py

k

–−1 »
qx

i − qx
k qy

i − qy
k

qx
j − qx

k qy
j − qy

k

–
. (2)

Making the following additional definitions

PT =

24 px
i py

i

px
j py

j

px
k py

k

35 ; QT =

24 qx
i qy

i

qx
j qy

j

qx
k qy

k

35 ; D =

»
1 0 −1
0 1 −1

–

P∗T = (DPT)−1D

we can rewrite (2) as AT = P∗TQT . Next let VT (t) be de-
fined analogously to PT , a 3x2 matrix containing the unknown
interpolated vertex locations, v{i,j,k}(t) at time t. The relation-
ship between these vertex positions and the original positions, PT ,
also uniquely determines a Jacobian, BT (t), which can be written
BT (t) = P∗TVT (t).

We obtain a set of desired target Jacobians, AT (t), using the polar
decomposition as explained in Section 3.1, and then minimize (1)

as in the original method. The notation just presented enables writ-
ing the equation more explicitly. As noted in Section 3.2, for con-
sistency we also weight the equations by triangle areas. The final
weighted least squares problem becomes:

E(t) =

MX
T=1

aT ‖P∗TVT −AT (t)‖2, (3)

where aT is the area of triangle PT . Rewriting each expression in
terms of a global N × 2 matrix of unknowns, V, we obtain:

E(t) =

MX
T=1

aT ‖PT V−AT (t)‖2, (4)

where for a triangle index T , with vertices(T) = {i, j, k},
PT is a sparse 2×N matrix with non-zero entries only in columns
i, j, k:

PT =

"
..

i

[P∗T]11 ..
j

[P∗T]12 ..
k

[P∗T]13 ..
.. [P∗T]21 .. [P∗T]22 .. [P∗T]23 ..

#
.

With this, we can now express the problem in terms of normal equa-
tions. We wish to find a minimum residual solution to PV = A with
a given weighting. The normal equations that express that are:

(PT WP)V = PT WA

where

P =
ˆ

PT
1 · · · PT

M

˜T

A =
ˆ

AT
1 · · · AT

M

˜T

W = diag(
ˆ

a1 · · · aM

˜
)

In terms of implementation, the core routine consists of assembling
the global N×N matrix PT WP and N×2 matrix PT WA. These
are precisely the −H and G matrices of Alexa et al., respectively.
It can be seen that these matrices have the form

P
T aT PT

T PT andP
T aT PT

T AT , in other words a sum of very sparse matrix multi-
plies. Thus implementation consists of just computing small dense
products of the form aT (P∗T)T (P∗T) and aT (P∗T)T AT and then
scattering the computed elements to their appropriate destinations
in the global LHS and RHS matrices, which are sparse. This is
identical to the “global assembly” stage of a finite element method.

5 Inexpensive symmetric interpolation

One desirable property of an interpolation technique is symmetry.
By this it is meant that interpolation P → Q generates the exact
same interpolation as Q → P under the substitution t ← (1 − t).
[Alexa et al. 2000] presents a modification to the cost equation that
makes interpolation symmetric:

E(t) = (1− t)
→
E (t) + t

←
E (1− t);

however, modifying the cost in this way requires re-solving the lin-
ear system for each new t value rather than reusing the fixed, pre-
computed LU decomposition. By formulating as a least squares
problem it is easy to see that one can symmetrize the cost function
simply by including both sets of constraint equations in a single
matrix. I.e. we wish to find a minimum-residual solution to:" →

P
←
P

#
V =

" →
A
←
A

#

Package Size Factor Solve Factor/Solve
(µsec) (µsec)

LAPACK1 328×328 10506 646.56 16.2
TAUCS2 328×328 3249 165.68 19.6

SuperLU3 328×328 3005 160.85 18.7
UMFPACK4 328×328 3022 133.59 22.6

LAPACK 164×164 2264 65.45 34.6
TAUCS 164×164 1110 72.25 15.4

SuperLU 164×164 638 39.66 16.1
UMFPACK 164×164 1185 38.88 30.5

Table 1: Computation Time: Time required to factor and
solve two sparse systems of equations using different numer-
ical packages. The 328×328 matrix has 3228 nonzero ele-
ments, 164×164 has 892. LAPACK is a dense solver, the oth-
ers are direct, sparse solvers. (Measurements made on a Pen-
tium IV XEON 3.60Ghz processor.) 1. http://www.netlib.org/lapack/
2. http://www.tau.ac.il/s̃toledo/taucs/ 3. [Demmel et al. 1999]
4. [Davis 2004]

in the weighted least-squares sense. This still leads to a system
matrix of the exact same size and sparsity, but creates a symmetric
interpolation that needs be factored only once for all t. This is very
significant as can be seen in Table 1, since factoring requires around
15-30 times as much computation as back-substitution.

The key difference is that [Alexa et al. 2000] interpolate the two
costs. The approach just explained is equivalent to simply adding
the two costs together, as E(t) =

→
E (t)+

←
E (1 − t). See Figure 4

for a comparison of interpolations with and without the symmetric
cost.

6 Constraints and control

One limitation of the techniques of [Alexa et al. 2000] and [Xu
et al. 2005] is that they offer no means for control. Given start
and end configurations, the math inexorably leads to a unique set
of vertex trajectories. There is no recourse if these trajectories are
not satisfactory to the animator. We present some simple and direct
methods to influence the interpolation while still attempting to pre-
serve rigidity. These take the form of hard or soft linear constraints,
which are easily expressed using the normal equations formulation.

For hard linear constraints there are two main options: substitution
and Lagrange multipliers. Substitution is optimal in that it actu-
ally reduces the number of degrees of freedom in the system, how-
ever it requires that you express your equations exclusively in terms
of these remaining degrees of freedom. For this reason, Lagrange
multipliers are generally considered to be easier to work with in
terms of modular software design. To enforce some additional lin-
ear constraints, CV = D, using Lagrange multipliers one forms
the augmented system:»

PT WP CT

C 0

–
V =

»
PT WA

D

–
(5)

Some simple possible constraints are

• C = [. . . 0 1 0 . . .] enables the constraining of a single vertex
location.

• C = [1/N 1/N . . .] constrains the mean of all the vertices.

• C = [. . . 1 . . .− 1 . . .] to enforce that the difference between
two vertices have a particular value.

Figure 4: Symmetric interpolation: A cartoon animal morphs into
a seahorse. With the basic method (top), interpolations are not sym-
metric in the inputs. A→B generates, to varying degrees, different
vertex paths than B→A. We present a simple inexpensive way to
make rigid interpolation symmetric (bottom). The difference can be
seen clearly by comparing the silhouettes at t = 0.5 (middle row).

Figure 5: Exercising control: Previous rigid interpolation tech-
niques were black-boxes. No means of influencing the resulting
interpolation was available. The original sequence (top) was mod-
ified using a combination of the hard (green) and soft (blue) con-
straints we propose in Section 6, resulting in the bottom sequence.

Figure 6: Rotation consistency: The coloration indicates clock-
wise (red) and counter-clockwise (blue) rotation magnitudes com-
puted by per-triangle polar decompositions. Using the original cal-
culation, some neighboring triangles rotate counter to others (top).
After applying our scheme, orientations are consistent (bottom).

Figure 7: Additional large rotation example: A snake coils up.
A spread of over 540 degrees is needed between the triangles at
the head and tail of the snake. (top) Before applying rotation fix
(bottom) after.

Soft constraints are also easy to incorporate. For these we need a
penalty weight, which is easy using the weighted least squares for-
mulation. For this, constraints are expressed by adding additional
rows to P. To impose soft constraints FV = G:

ˆ
PT FT

˜
W

»
P
F

–
V =

ˆ
PT FT

˜
W

»
A
G

–
(6)

The strength of the penalty forces can be altered by changing the
corresponding weights along the diagonal of W.

These two simple modifications allow us to exercise arbitrary con-
trol over individual vertices or collections of vertices while letting
the as-rigid-as-possible technique determine the remaining trajec-
tories. Please see Figure 5 and the supplemental video for demon-
strations.

7 Making rotation consistent

In a significant number of practical situations, orientation may be
interpolated incorrectly by current rigid interpolation approaches
such as [Alexa et al. 2000; Xu et al. 2005]. The difficulty stems
from the inherent ambiguity of extracting a rotation angle from a
rotation matrix. The resulting angle is not unique: α + 2kπ for
k ∈ Z. The result of this can most clearly be seen in Figures 6
and 7. Looking at the per-triangle rotations, large discontinuities
can be seen where the rotation direction changes abruptly because
of naı̈vely choosing the smallest magnitude rotation for each indi-
vidual triangle.

Some means is needed to make these rotations consistent. Inconsis-

Figure 8: Minimizing rotation: Results like the above can arise
from naı̈ve application of the rotation consistency fix. The entire cat
rotates around its tail because of an unlucky choice of initial trian-
gle. Compare with corrected minimal rotation sequence in Figs. 5
and 6.

tent rotations can occur anywhere in a shape, either in the interior
or on the boundary. To prove this, consider a single triangulated
shape and a copy of it rotated 180 − ε degrees. Now rotate any
triangle of the copy by 2ε degrees. This will introduce a rotational
discontinuity in the neighborhood of that triangle. In fact, Figure 1
results from a closely related scenario: a copy of the turtle has been
rotated by exactly 180 degrees to create the target shape. Due to
numerical imprecision, however, triangles end up with rotations of
180 ± ε. The situation also arises in less degenerate situations as
well (Figures 6, 7). In particular, any interpolation where the rota-
tion required is greater than 180 degrees is problematic, since, ab-
sent other information, angle extraction techniques typically return
an answer on the [−180, 180] domain.

Our approach is to start from the boundaries and work inward. We
wish to find places where the angle extracted from polar decom-
positions have large discontinuities between adjacent triangles (we
use 180 degrees as a threshold), and add or subtract multiples of
360 degrees as needed to get all jumps below 180 degrees. Walk-
ing first around the boundary gives us a linear sequence of angles
which is quick and easy to process.

Removing discontinuities in this sequence of boundary rotations is
in fact a classic problem. It is precisely the problem faced when ex-
tracting the phase from a discrete Fourier transform. Most libraries
that provide a 1D FFT function also provide some sort of phase
unwrap() function which does exactly what we need. We put our
rotations into an array and just pass it to such a function. The basic
algorithm is O(N) and just involves scanning through the values
one-by-one looking for discontinuities, and raising or lowering the
tail end as needed to eliminate discontinuities greater than 180 de-
grees.

Once we obtain the new boundary rotations via the FFT phase
unwrap() procedure, we treat these rotations as ground truth and
proceed to propagate these “good” rotations inward in a breadth
first manner.

Specifically, we start by pushing all boundary triangles on a stack,
tagging them all as VISITED. We then iteratively pop them off one
by one. For each triangle popped off, we examine its neighbors, and
any which are VISITED are ignored. For the others we adjust the
rotations of any that are inconsistent with the popped triangle, set
their VISITED flags and push each of them back on the stack. The
process continues until the stack is empty. The corrected results in
Figures 1, 6 and 7 were generated in this way.

After this is complete, the rotations should be consistent (if a con-
sistent assignment is possible); however, the rotation may not be
minimal, as can be seen in Figure 8. Furthermore the presence or
lack of excess rotation depends upon the choice of initial triangle.
This is true of [Choi and Szymczak 2003] as well. Such depen-
dence is undesirable and should be eliminated. The extra rotation
itself may or may not be desired by the user; however, we believe

the minimal rotation is likely to be the one desired in the vast ma-
jority of cases, and thus makes the best default.

We use a very simple approach to eliminate the excess rotation. We
simply take the area-weighted average rotation over all the triangles
and add or subtract multiples of 360 until the average is as close
to zero as possible. For the area of triangle {i, j, k}, we use the
average of triangle areas {pi, pj , pk} and {qi, qj , qk}.

8 Discussion and future work

We have presented both a new mathematical formulation and anal-
ysis of rigidity preserving interpolation. We pointed out the equiv-
alence of Alexa et al.’s least squares solution and Xu et al.’s Pois-
son formulation. We additionally identified several areas in which
the methods could be improved and offered solutions providing:
tessellation-independence (adapted from Xu et al.), inexpensive
symmetric cost, direct vertex control of results, and finally we fixed
a significant issue with the handling of large rotations.

There is still room for improvement, however. In particular, with
our constraint technique, the underlying ideal rotations AT do not
“know” about the constraints we have imposed, and thus unnatural
behavior will result if the constraints are not somewhat consistent
with the underlying rotations. Thus there is a limit to the amount of
control offered by this technique.

In the future we are interested in pursuing a least-squares formula-
tion of 3D mesh interpolation using the same connection between
least-squares and the Poisson equation exploited here for 2D. With
the recent popularity of Poisson-based techniques, it also seems
likely that many other recent works could take advantage of the
simpler, but mathematically equivalent, weighted least squares for-
mulation. Finally, we are currently pursuing ideas for how to pro-
vide more flexible rigidity-preserving animation controls.

Acknowledgments: This work was supported in part by the
Japan Science and Technology Agency, CREST project.

A Linear least squares and normal equations

Since it is the basis of our reformulation, we present here a brief
review some fundamental aspects of linear least squares. More in-
formation can be found in [Pighin and Lewis 2007].

Given a set of over- or under-constrained linear equations in un-
knowns, u, we may express them in matrix form as Au = b,
where A is non-square. We can find a solution that minimizes
‖Au − b‖2 =

P
i ‖[A]iu − [b]i‖2 via the normal equations:

AT Au = AT b. (AT A) is square, so can be inverted if non-singular
or decomposed to find u. In weighted least squares, we wish to min-
imize

P
i wi‖[A]iu− [b]i‖2. This can also be expressed in matrix

form as AT WAu = AT Wb, where W is a diagonal matrix with
[W]ii = wi. Note that u and b need not be simple vectors—they
may be matrices as well.

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-
possible shape interpolation. In Proc. SIGGRAPH ’00, 157–164.

ALEXA, M. 2002. Recent advances in mesh morphing. Computer
Graphics Forum 21, 2, 173–197.

BEIER, T., AND NEELY, S. 1992. Feature-based image metamor-
phosis. In Proc. SIGGRAPH ’92, ACM Press, New York, NY,
USA, 35–42.

CHOI, J., AND SZYMCZAK, A. 2003. On coherent rotation an-
gles for as-rigid-as-possible shape interpolation. In Proc. 15th
Canadian Conf. Comp. Geom., 111–114.

DAVIS, T. A. 2004. Algorithm 832: Umfpack v4.3—an
unsymmetric-pattern multifrontal method. ACM Trans. Math.
Softw. 30, 2, 196–199.

DEMMEL, J. W., EISENSTAT, S. C., GILBERT, J. R., LI, X. S.,
AND LIU, J. W. H. 1999. A supernodal approach to sparse
partial pivoting. SIAM J. Matrix Analysis and Applications 20,
3, 720–755.

FU, H., TAI, C.-L., AND AU, O. K.-C. 2005. Morphing with
laplacian coordinates and spatial-temporal texture. In Proc. Pa-
cific Graphics ’05, 100–102.

GOTSMAN, C., AND SURAZHSKY, V. 2001. Guaranteed
intersection-free polygon morphing. Computers and Graphics
25, 1, 67–75.

GREGORY, A., STATE, A., LIN, M., MANOCHA, D., AND LIV-
INGSTON, M. 1998. Feature-based surface decomposition for
correspondence and morphing between polyhedra. In CA ’98:
Proceedings of the Computer Animation, 64.

KANAI, T., SUZUKI, H., AND KIMURA, F. 2000. Metamorphosis
of arbitrary triangular meshes. IEEE Comp. Graph. App. 20, 2,
62–75.

KAVAN, L., DOBBYN, S., COLLINS, S., ZARA, J., AND
O’SULLIVAN, C. 2008. Polypostors: 2d polygonal impostors
for 3d crowds. In 2008 ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games, ACM Press.

LEE, S.-Y., CHWA, K.-Y., AND SHIN, S. Y. 1995. Image meta-
morphosis using snakes and free-form deformations. In Proc.
SIGGRAPH ’95, 439–448.

LEE, A. W. F., DOBKIN, D., SWELDENS, W., AND SCHRÖDER,
P. 1999. Multiresolution mesh morphing. In Proc. SIGGRAPH
’99, 343–350.

PIGHIN, F., AND LEWIS, J. P. 2007. Practical least-squares for
computer graphics. In SIGGRAPH ’07: courses, ACM, New
York, NY, USA, 1–57.

SCHAEFER, S., MCPHAIL, T., AND WARREN, J. 2006. Image
deformation using moving least squares. In Proc. SIGGRAPH
’06, 533–540.

SHEFFER, A., AND KRAEVOY, V. 2004. Pyramid coordinates for
morphing and deformation. In Proc. 2nd International Sympo-
sium on 3D Data Processing, Visualization, and Transmission.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ,
J. 2005. Mesh-based inverse kinematics. Proc. SIGGRAPH ’05,
488–495.

SURAZHSKY, V., AND GOTSMAN, C. 2001. Controllable morph-
ing of compatible planar triangulations. ACM Transactions on
Graphics 20, 4, 203–231.

TONG, Y., LOMBEYDA, S., HIRANI, A. N., AND DESBRUN, M.
2003. Discrete multiscale vector field decomposition. Proc. SIG-
GRAPH 03 22, 3, 445–452.

WOLBERG, G. 1998. Image morphing: A survey. The Visual
Computer 14, 8, 360–372.

XU, D., ZHANG, H., WANG, Q., AND BAO, H. 2005. Poisson
shape interpolation. In SPM ’05: Proceedings of the 2005 ACM
symposium on Solid and physical modeling, 267–274.

