
N-way morphing for 2D animation

William Baxter
OLM Digital, Inc.

Tokyo, Japan
baxter@olm.co.jp

Pascal Barla
INRIA Bordeaux University

Bordeaux, France
pascal.barla@labri.fr

Ken Anjyo
OLM Digital, Inc.

Tokyo, Japan
anjyo@olm.co.jp

ABSTRACT
We present a novel approach to the creation of varied ani-
mations from a small set of simple 2D input shapes. Instead
of providing a new 2D shape for each keyframe of an ani-
mation sequence, we instead interpolate between a few ex-
ample shapes in a reduced pose-space. Similar approaches
have been presented in the past, but were restricted in the
types of input or range of deformations allowed. In order
to address these limitations, we reformulate the problem as
an N-way morphing process on 2D input bitmap or vec-
tor graphics. Our formulation includes an N-way mapping
technique, an efficient, rigidity preserving non-linear blend-
ing function, improved extrapolation, and a novel scattered
data interpolation technique to manage the reduced pose-
space.

The resulting animations are correlated to paths in the re-
duced pose-space, allowing users to intuitively and interac-
tively control temporal behaviors with simple gestures. We
demonstrate our techniques in several example animations.

Keywords
Rigid interpolation, N-way interpolation, morphing, defor-
mation, pose-space, 2D animation.

1. INTRODUCTION
The creation of attractive 2D animations has always been a
skill-demanding and time-consuming process. Software such
as ToonBoom c© and Adobe Flash c© provide some assistance
by creating animations from a reduced number of keyframes,
generating inbetween images automatically in specific cases:
for instance, deforming a template shape via handles, or
transforming simple geometric primitives. Even with these
tools, the tasks of ordering, creating and laying out in time
the numerous keyframes that compose an animation is left
to users, and requires significant skill and time.

These pressures are leading the animation industry away

from traditional hand-drawn techniques towards a pipeline
based on parameterized 2D and 3D models. The move to
parameterized models reduces production costs, and enables
some new possibilities (such as enhanced camerawork in the
case of 3D models) but often these gains come at the ex-
pense of the real core values of animation, like character
and expression, and are at odds with well-understood princi-
ples like the importance of strong, easily read silhouettes [1].
Parameterized models inevitably mean loss of freedom and
expressiveness. It is simply not possible to encode the free-
doms of pencil and paper in any finite number of parameters.

In this paper, we explore an alternative approach for the cre-
ation of 2D animations which we believe strikes a compelling
balance between the flexibility and expressiveness of hand-
drawn animations, and the expedience and cost-savings of
parametric models. It addresses many of the limitations
of the manual keyframe-based approach by factorizing key-
frames into a smaller number of base poses. We identify
2D input shapes as points in a reduced pose-space, and new
shapes are created by interpolating from the given data at
an arbitrary point in this space. The two main issues of such
an approach are thus 1) defining a reduced pose-space that
is intuitive and efficient to browse, and 2) defining an N -
way interpolation method applicable to arbitrary 2D input
shapes. Our work builds on previous techniques that took
a similar reduced pose-space approach (e.g. [2, 3, 4]). How-
ever, as explained in Section 2, these methods only partially
addressed the key issues pertinent to 2D animation.

The main contribution of this paper is thus to adapt and
improve various pose-space techniques, with the demands of
2D animation in mind. To this end, we formulate 2D anima-
tion as an N-way morphing problem: first, base poses are
put in correspondence via an N-way mapping (Section 3);
second, they are manually arranged in a reduced, 2D pose-
space, and combined via rigidity-preserving N-way interpo-
lation (Section 4). The flexibility of our algorithms allows
the creation of a more varied range of 2D animations than
previous methods (Section 6) via a technique that is sim-
ple for the animator. Moreover, as with other pose-space
methods, our approach enables the creation of animations
through the interactive exploration of various combinations
of base poses, which can be used even by non-animators to
create animated results. These techniques also can serve as
a means for data reduction by eliminating many keyframes,
which can benefit interactive applications like games or an-
imation streaming applications where bandwidth matters.

2. PREVIOUS WORK
The idea of morphing between a set of base poses to pro-
duce animations has first been suggested by Alexa et al. [5].
However, their morphing space grows in dimensionality with
increasing number of base poses, and they provide N-way in-
terpolations via recursive 2-way linear interpolations. This
approach is thus neither intuitive nor efficient in practice.
The simplicial families of drawings of Kovar and Gleicher [6]
partly address these limitations by using a tessellated version
of pose-space, which enables simple linear N-way interpola-
tion. However, the dimensionality of space still grows with
the number of base poses; and linear interpolation often pro-
duces undesired results that must be manually discarded.

To address the latter issue, Alexa et al. [7] have introduced
an as-rigid-as-possible interpolation approach that produces
much more plausible animations. It has been improved in
the context of 2D animation by Baxter et al. [8], in particu-
lar to provide local user control. Both methods are limited
to 2-way interpolation, however. Bregler et al. [9] extended
the method to more than two dimensions by densely pop-
ulating pose-space with 2-way rigidly interpolated shapes,
and using linear interpolation afterwards. However, as in
[6], this approach generates many invalid shapes, and as a
result browsable regions must be restricted. Xu et al. [10]
propose a 2-way rigid interpolation method and extend it to
N-way in one of their examples, but this is done as in [5] by
repeated 2-way blends, which is inefficient and leads to an
order-dependent result.

To the best of our knowledge, no previous work has proposed
a pose-space approach which gives intuitive and efficient in-
terpolation behaviors for a set of arbitrary input 2D shapes.
Some methods have addressed the problem by restricting
the allowable type of inputs. For instance, early work in im-
age morphing [11] used multiple input images, constraining
deformation to be applied to a regular grid. More recently,
the latent doodle space of Baxter et al. [4] proposed an intu-
itive approach whereby line drawings are interpolated in a
pose-space of reduced dimension (called a latent space). The
method enables easy browsing and exploration of a subspace
of poses. But it is limited to line drawings with the same
number of lines and may give unnatural results since curves
are linearly interpolated.

Other approaches have dealt with more general shapes by
considering deformations of a template model. For instance,
the spatial keyframing method of Igarashi et al. [12] ani-
mates 3D objects composed of simple blobby parts with a
pose-space approach. A similar animation technique is em-
ployed by these authors to animate 2D shapes using their
as-rigid-as-possible shape manipulation technique [3]. Given
a fixed number of handles, they create multiple poses that
are animated by interpolating handles’ positions. However,
the range of deformation is limited with this approach, as
shown in Figure 1. Moreover, it is not always clear how to
interpolate the handles to achieve plausible interpolations
overall. In contrast, the mesh inverse kinematics of Sum-
ner et al. [13] directly interpolates between multiple meshes.
However, these are still obtained by deforming a template
model, and the pose-space is not browsed directly, but with
a non-linear inverse kinematics approach.

As a summary, there are two main issues with previous ap-
proaches that strongly limit their application to the context
of 2D animation: they impose restrictions either on the type
of inputs or on the range of deformations. Dealing with ar-
bitrary shapes as input requires establishing an N-way map-
ping between them. Unfortunately, existing techniques (e.g.,
[14, 15, 16]) only permit the creation of 2-way mappings in
practice. We propose N-way extensions to the compatible
triangulation method of Baxter et al. [16] to overcome this
limitation (Section 3). Similarly, as-rigid-as-possible inter-
polation is defined for a pair of 2D shapes in [7, 10], while
N-way interpolation is required in our case. To address this
issue, we present an efficient N-way interpolation technique
that preserves rigidity and offers improved extrapolation ca-
pabilities, along with a novel scattered data technique for
organizing a 2D reduced pose-space (Section 4).

3. N-WAY MAPPING
We first establish a N-way mapping between the input shapes
provided by the user. To this end, we build a compatible tri-
angulation, a process often called the vertex correspondence
problem: each input shape is tessellated in a way that en-
sures that each vertex has a corresponding vertex in all other
shapes, with consistent neighborhoods. Our approach is in-
spired from [16] and is presented in Section 3.1. We also
discuss another approach to populate pose-space using de-
formation techniques in Section 3.2. This can be used by
itself or to create variations on the base poses obtained by
compatible triangulation.

3.1 Mapping via compatible triangulation
Our approach to compatible triangulation is a direct exten-
sion of the recent work of [16] to the case of more than two in-
put shapes. Like in their approach, we decompose the prob-
lem in three steps: 1) establish correspondences between
shape boundaries; 2) simplify these boundaries while keep-
ing their correspondences and ensuring the original shapes
are properly embedded; and 3) triangulate the interiors com-
patibly. The system works both with bitmap input from
which we extract a boundary with conventional image pro-
cessing software, or from shapes directly drawn in vectorial
format with a clear outline.

Boundary matching: . The outcome of the boundary cor-
respondence algorithm presented in [16] between a pair of
shape boundaries B0 and B1 is a mapping f : [0, 1]→ [0, 1].
The user gives a first correspondence point to initialize the
algorithm, and a few more correspondences if the mapping
needs to be refined locally. We extend this approach to
N-way matching by requiring that all shapes Bi, i > 0 be
matched to B0. This way, we make use of B0 as a common
parametrization domain for all input shapes. In practice,
B0 often represents a neutral pose that is located at the
origin of pose-space, and bears some resemblance with the
reference pose commonly used for character skinning.

Compatible simplification: . Next, we need to extend this
N-way mapping between boundaries to the interiors using a
compatible triangulation algorithm. However, this should
not be done at full boundary resolution, otherwise the re-

sulting meshes would contain many tiny triangles, impeding
performance in practice. For this reason, Baxter et al. [16]
use a compatible boundary simplification algorithm that re-
duces the number of boundary vertices while maintaining
enclosure of the original shape. It consists of a greedy al-
gorithm that removes vertex pairs (one on each boundary)
iteratively. At each step, the removed pair is the one that
minimizes a quadratic approximation error that retains the
enclosing property [16]. The algorithm terminates when the
overall error exceeds a user-specified threshold. For N-way
simplification, the extension is straightforward: we simply
look at the minimum over all the compatible boundaries to
decide which set of N corresponding vertices to remove.

Compatible triangulation: . After these two steps, we are
left with a set of N compatible boundaries at a reasonable
resolution. The 2-way approach in [16] works with a divide-
and-conquer strategy, by iteratively partitioning boundary
polygons in each shape in a compatible way until the remain-
ing polygons are triangles. We summarize the three stages
of their approach and the way we extend them to N-way
operation below:

• Stage I: Find all pairs of vertices (i, j) in the shapes
that have direct line-of-sight, and record these in a ma-
trix as having a distance of 1. In the 2-way algorithm,
if a pair is marked in both matrices, then it is a valid
compatible partition. For N input shapes, we use N
matrices, and apply the same criterion. If no such pair
is found, then move to Stage II.

• Stage II: Find all the pairs of vertices (i, j) which can
be connected via a single internal Steiner point in each
shape. Record these in the distance matrix as having
a distance of 2. Again check if any pair exists in both
matrices, if so, partition with that. The extension to
N-way is similar. Move to Stage III in the rare cases
this does not work.

• Stage III: Find all pairs of vertices that can be con-
nected using any number of steps by running a Floyd-
Warshall all-pairs-shortest-paths algorithm on each dis-
tance matrix. Choose a vertex pair (i, j) that uses
the fewest Steiner vertices across all shapes. For N
shapes, find the (i, j) pair that minimizes the number
of Steiner vertices over all N shapes.

After a compatible triangulation has been obtained, we use
an iterative angle-based smoothing, combined with compat-
ible edge flips to improve the overall minimum angles of
triangles as in [15]. It generalizes to N compatible meshes
in a straightforward manner.

The important observation is that Baxter et al.’s algorithm
generalizes quite easily and efficiently to N-way operation.
Most sets of similar shapes can still be triangulated with
very few Steiner vertices, as can be seen in Figure 2 (top
row). This is not the case with other triangulation methods
like the technique of Aronov et. al [14]. A straightforward
N-way extension of that method will create O(|V |N) Steiner
vertices, making its use impractical.

3.2 Mapping via deformation
Another convenient way to create compatibly triangulated
shapes is simply to deform a base mesh. Any 2D mesh or
spatial deformation technique could be used. We have im-
plemented the as-rigid-as-possible deformation technique of
Igarashi et al. [3] because it produces results visually similar
to as-rigid-as-possible interpolations.

This approach offers some additional flexibility over typical
deformation-based animation techniques. When animating
using free form deformation, or a handle-based technique,
it is typically necessary that the constraints (cage or han-
dles) remain consistent throughout the animation. The same
handles and deformers must be used all along, ultimately
resulting in many handles to specify at every point of the
animation sequence. Our interpolation-based animation, on
the other hand, is uniformly applicable to all key poses, re-
gardless of how they were created.

As a result, our rigid interpolation scheme creates pleasing
in-between motion between any poses without having to de-
fine an interpolation scheme for the underlying parameters
that created the deformation. This deformation technique is
useful with a single base pose, or for creating variations on
several base poses generated via compatible triangulation,
as shown in Figure 2 (bottom row) and Figure 3.

4. N-WAY RIGID INTERPOLATION
Once input shapes have been put in correspondence, they are
arranged as points in a 2D pose-space. The influence of each
base pose relative to an arbitrary location in pose-space is
then given as a weight wi ∈ [0, 1], with

∑
i wi = 1. The prob-

lem of interpolating between base poses Bi using weights wi
is often referred to in the geometric interpolation literature
as the vertex trajectory problem. As-rigid-as-possible inter-
polation techniques have proven to produce very plausible
trajectories, but existing N-way approaches [10, 13] work in
N-dimensional pose-spaces. In contrast, our N-way interpo-
lation technique works in a reduced, 2D pose-space. We or-
ganize our approach in two steps: 1) for an arbitrary point in
our reduced pose-space, we determine the set of weights for
each base pose with a sparse interpolation technique (Sec-
tion 4.1); and 2) we produce a new shape using a weighted
combination of base-poses that favors rigid interpolations
and extrapolations (Section 4.2).

4.1 Biharmonic weight interpolation
The most straightforward approach to determine the weights
of each base pose is to organize them in an N-dimensional
space and use linear interpolation. However, as noted pre-
viously, this approach greatly reduces the creative and intu-
itive potential of pose-space approaches because users can-
not easily explore the different combinations. For this rea-
son, we prefer to use a two-dimensional pose-space, and we
let users position base poses as points in this space, similar
to [2, 12].

In such a 2D pose-space, base pose weights can no longer
be linearly interpolated. We thus turn to scattered data
interpolation techniques to determine the set of weights at
a particular location. Techniques such as thin-plate spline
radial basis functions (RBF) [17, 12, 4] create smooth (C2)
interpolations, but they have a limitation in our context:

they need at least 3 non-collinear base poses. For some
animations, though (see Section 6), a linear arrangement of
key poses may be exactly what is desired.

We present a new mesh-based interpolation scheme which
overcomes this issue and offers some other interesting new
possibilities, as well. The basic observation is that mini-
mizing the differences in gradients on a mesh in the least-
squares sense serves as a discrete approximation to a bihar-
monic solution. Thus the result behaves much like a thin-
plate spline interpolant [18], but by relying on a least-squares
framework it becomes easy to incorporate secondary, even
spatially-varying, objective functions. Note that the goal of
this interpolation is solely to determine an N -dimensional
weight vector to use for interpolating the N input meshes.
The mesh interpolation itself will be described in the next
section.

The first step is to tessellate the pose-space. Any tessellation
will do, though one with evenly-sized triangles is preferred
due to the simple second derivative approximation implied
by (1), below. We currently tessellate using Shewchuk’s Tri-
angle [19], though a regular tessellation would also work.
Let |V | represent the number of vertices in the mesh, and
E(T) be the set of triangle pairs that share an edge. The
basic equations we minimize are:∑

j,k∈E(T)

‖Jj(W)− Jk(W)‖2, (1)

where Jj(W) is the Jacobian of triangle j expressed as a

linear function of the data values, W ∈ R|V |×N (row-vector
convention for data values). Let P{a,b,c} ∈ R2 be the points

in the base triangle and W{a,b,c} ∈ RN be the corresponding
N -dimensional data values in W , then:

Jj(W) =

[
Pa − Pc
Pb − Pc

]−1 [
1 0 −1
0 1 −1

]Wa

Wb

Wc

 (2)

In addition to the above energy terms, we enforce the N -
dimensional data points as constraints at their given loca-
tions in the reduced pose-space. In this work we have used
symbolic elimination to enforce these constraints, though
penalty energies or Lagrange multipliers would also work.

Finally, in order to ensure a non-singular system matrix,
we add a secondary objective function with a small weight
to encode a preference for zero gradients in the absence of
other constraints:

∑
i ε‖Ji(W)‖2. Without this, the ma-

trix is ill-conditioned given collinear or nearly-collinear con-
straint points. This extra term also serves to eliminate the
unbounded extrapolation which is typical of standard thin-
plate spline RBF interpolations. Near the data, the result of
this interpolation is visually very similar to thin-plate spline
RBF, but far from the data our solution levels out, more
like a Gaussian RBF. An example interpolation of several
data points, visualized as a color interpolation, can be seen
in Figure 3.

4.2 N-way rigid pose interpolation
Our pose-space interpolation technique is an N-way general-
ization of the 2-way interpolation defined by Alexa et al. [7]
using the weights wi computed in the previous section. It

can also be seen as a 2D adaptation of the nonlinear blending
technique presented in Sumner et al. [13]. The interpola-
tion involves solving a least-squares problem in which the
gradients of the mapping between individual shape trian-
gles are interpolated non-linearly. Alexa et al. [7] observe
that best results are obtained by separating the rotation
component from the remaining scale and shear components
and interpolating these two separately. The shear matri-
ces are interpolated directly, but the rotation is interpolated
linearly by angle. This can be generalized to N-way opera-
tion by turning the 2-way interpolations of these components
into N-way convex mixtures. Let Aτ,i = R(ατ,i)Sτ,i be the
polar-decomposed matrix that transforms triangle τ in the
base pose to the corresponding triangle in shape i [20]. Here
ατ,i is the rotation angle that rotates the triangle in the
base pose into best alignment with the same in shape i, and
similarly Sτ,i is the shear matrix. Naturally, if shape i is
the base pose, then ατ,i = 0 and Sτ,i = I. Given blend
weights w = {wi}, the per-triangle target transformation
matrix Aτ (w) is computed as

ατ (w) =
∑
i

wiατ,i

Sτ (w) =
∑
i

wiSτ,i

Aτ (w) = R(ατ,i(w))Sτ,i(w).

Given these target transforms, the least-squares problem for
vertex locations can now be solved exactly as in [7], by min-
imizing

∑
τ ‖Jτ (V) − Aτ (w)‖2. An example result along

with a comparison with linear interpolation are shown in
Figure 3.

Shear limiting:. Extrapolation is usually problematic. In
this case, by extrapolation we mean going outside the (N −
1)-simplex defined by the N input shapes, where wi /∈ [0, 1]
for one or more wi. We observe that it is primarily the ex-
trapolation of the shear/scale matrix that leads to problems.
Thus we propose shear limiting as a means of improving the
ability of mesh interpolation schemes to extrapolate beyond
the given data.

Shear limiting can be accomplished by merely clamping each
weight to [0, 1], then renormalizing. But this leads to dis-
continuous motion at the extremes. A better approach is to
remap the weights using a smooth function, φ(t).

w′i =
φ(wi)∑
j φ(wj)

,

where φ is a function satisfying φ(0) = 0, φ(1) = 1, dφ/dt|0 =
0, dφ/dt|1 = 0. In our system, we use a Hermite cubic curve.
Note that we still use the original, unmodified weights to in-
terpolate rotations. An example of shear limiting can be
seen in Figure 4.

Texture blending:. Extrapolation is also problematic for
texture blending. Colors will look either washed out or dark
if extrapolation is used. Another issue is that gradual, linear
texture transitions often look poor when applied to inputs

with strong, high contrast edges like cartoons. To handle
these issues we remap the texture-blending weights using
soft clamping plus a variable-width transition, determined
by a parameter σ ∈ [0, 1]. We start from the w′i weights
above, then compute a sharpened transition as

w∗i = σ φ
(
w′i,

σ

2
, 1− σ

2

)
+ (1− σ)w′i

w′′i =
w∗i∑
j(w
∗
j)
,

where φ(t, a, b) is a smoothstep function that maps inputs on
[a, b] smoothly to [0, 1]. This gives a simple linear transition
for σ = 0 and approaches a step function as σ → 1.

5. RESULTS
6. DISCUSSION AND FUTURE WORK
We have presented several techniques for creating 2D ani-
mations using N-way morphing. Figures 2–4 show various
results from our techniques. The quality of animations is
difficult to convey through still images, so we encourage the
reader to also view the examples in our supplemental video.

We have demonstrated how with a few fairly small changes
to existing methods, one can generate much richer 2D an-
imations than was previously possible with morphing. We
believe these techniques will prove useful for a variety of
purposes: for animating crowds or secondary characters in
2D feature animations, for low-bandwidth, controllable ex-
pressive avatars for networked virtual worlds, and for the
animatics used in the pre-visualization of feature films.

However, there are still many ways to improve upon these
results. For the user, a way to directly specify N-way bound-
ary correspondences, instead of pair-wise correspondences,
would simplify the workflow. Our compatible triangulation
has difficulty with anything but simple polygons as input
(loops and degenerate slivers are not accepted). Interior
correspondences are also currently problematic. Further-
more we make no attempt to warp textures to improve the
blending, relying only on the coarse geometry to achieve ap-
proximate correspondence. We would like to address these
issues in future work.

Another major limitation of the current work is the reliance
on rigidity-preserving interpolation. Objects which are rigid
in 3D do not generally preserve that rigidity in 2D projec-
tion. Hence, our animations tend to be limited to motions
in the camera plane. More flexible controls over local scaling
are needed to overcome this. Another significant limitation
is that it is difficult to use drawings with overlapping parts,
such as an arm drawn in front of the chest. One could man-
ually separate these drawings into distinct layers, but this is
tedious. We are investigating ways to automate this process.

Future directions:. Control over continuity is an impor-
tant aspect of animation creation; however, with only the
ability to morph between two shapes at a time, works such
as [7, 16] were limited in their ability to create long sequences
of smooth, keyframed animations. To create a continuous
curve, you must gather contributions from more than two
samples. Our new techniques enable this, thereby opening

Figure 1: Morphing vs deformation for animation.
Deformation techniques generally have a difficult
time achieving a specific silhouette. Here 1 and
2 are the desired silhouettes. Handle-based defor-
mation is simple, but with a small number of han-
dles (IgA), it cannot match the desired target shape.
With more handles (IgB) it comes closer, but man-
aging the handles becomes cubmersome for the user.
With our morphing approach (M), the desired sil-
houettes can be matched exactly.

the door to longer, more complex morphing-based anima-
tions in the future.

The ability to add objective functions to our least-squares
biharmonic scattered data scheme opens new possibilities,
such as locally controlling the behavior of interpolation via
user-interactions. Also the mesh based nature of the algo-
rithm means it could be applied to interpolation problems
with more complex topology than a 2D plane. We plan to
investigate such extensions.

Figure 2: N-way mapping. Top: Mapping via com-
patible tessellation. Four tesselated shapes gener-
ated by our algorithm (left). The algorithm added
just 7 Steiner vertices. Meshes are then smoothed
and refined compatibly (right). Bottom: Mapping
via deformation. Four deformations of an input im-
age (top left) provide trivial mappings. Novel poses
generated with our technique are shown for both
sets of inputs.

7. REFERENCES
[1] Richard Williams. The Animator’s Survival Kit. faber

and faber, 2001.

[2] Peter-Pike J. Sloan, III Charles F. Rose, and
Michael F. Cohen. Shape by example. In SI3D ’01:
Proceedings of the 2001 symposium on Interactive 3D
graphics, pages 135–143, New York, NY, USA, 2001.
ACM Press.

[3] Takeo Igarashi, Tomer Moscovich, and John F.
Hughes. As-rigid-as-possible shape manipulation.
ACM Trans. Graph., 24(3):1134–1141, 2005.

[4] William Baxter and Ken-ichi Anjyo. Latent doodle
space. Computer Graphics Forum, 25(3):477–485,
2006.

[5] Marc Alexa and Wolfgang Müller. The morphing
space. In Proceedings of WSCG 99, Plzen, pages
329–336, 1999.

[6] Lucas Kovar and Michael Gleicher. Simplicial families
of drawings. In UIST ’01: Proceedings of the 14th
annual ACM symposium on User interface software
and technology, pages 163–172, New York, NY, USA,
2001. ACM Press.

[7] Marc Alexa, Daniel Cohen-Or, and David Levin.
As-rigid-as-possible shape interpolation. In
SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques, pages 157–164, New York, NY, USA, 2000.

[8] William Baxter, Pascal Barla, and Ken Anjyo. Rigid
shape interpolation using normal equations. In Proc.

Figure 3: N-way interpolation. Top row: two input
shapes (left) plus four additional shapes obtained
by deformation (right) constitute the base poses an-
imating the clown. Middle row: Novel poses gen-
erated with our approach. Bottom row: scattered
data interpolation using our mesh-based biharmonic
least squares formulation (left), and a visual compar-
ison of linear and rigidity-preserving interpolation
(right).

Figure 4: Additional results. Top: interpolation re-
sults from four different drawings of a character’s
face. Bottom: interpolation of a vector-graphics
snake; note how rigidity-preserving interpolation
produces plausible intermediate poses. Extrapola-
tion gives more plausible results with shear limiting
than without (bottom right).

Non-Photorealistic Animation and Rendering, 2008.

[9] Christoph Bregler, Lorie Loeb, Erika Chuang, and
Hrishi Deshpande. Turning to the masters: motion
capturing cartoons. In SIGGRAPH ’02: Proceedings
of the 29th annual conference on Computer graphics
and interactive techniques, pages 399–407, New York,
NY, USA, 2002. ACM Press.

[10] Dong Xu, Hongxin Zhang, Qing Wang, and Hujun
Bao. Poisson shape interpolation. In SPM ’05:
Proceedings of the 2005 ACM symposium on Solid and
physical modeling, pages 267–274, New York, NY,
USA, 2005. ACM Press.

[11] George Wolberg. Image morphing: A survey. The
Visual Computer, 14(8):360–372, 1998.

[12] Takeo Igarashi, T. Moscovich, and John F. Hughes.
Spatial keyframing for performance-driven animation.
In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, pages 107–115, New York, NY, USA, 2005.
ACM Press.

[13] Robert W. Sumner, Matthias Zwicker, Craig
Gotsman, and Jovan Popović. Mesh-based inverse
kinematics. SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers, pages 488–495, 2005.

[14] B. Aronov, R. Seidel, and D. Souvaine. On compatible
triangulations of simple polygons. Computational
Geometry: Theory and Applications, 3:27–35, 1993.

[15] Vitaly Surazhsky and Craig Gotsman. High quality
compatible triangulations. Engineering with
Computers, 20(2):147–156, April 2004.

[16] William Baxter, Pascal Barla, and Ken Anjyo.
Compatible embedding for 2d shape animation.
Technical Report OLMTRE-2008-001, OLM Digital,
2008.

[17] Holger Wendland. Scattered Data Approximation.
Monographs on Applied and Computational
Mathematics. Cambridge University Press, 2004.

[18] Grace Wahba. Spline Models for Observational Data.
SIAM, 1990.

[19] Jonathan Richard Shewchuk. Triangle: Engineering a
2D Quality Mesh Generator and Delaunay
Triangulator. In Ming C. Lin and Dinesh Manocha,
editors, Applied Computational Geometry: Towards
Geometric Engineering, volume 1148 of Lecture Notes
in Computer Science, pages 203–222. Springer-Verlag,
May 1996. From the First ACM Workshop on Applied
Computational Geometry.

[20] Ken Shoemake and Tom Duff. Matrix animation and
polar decomposition. In Proc. Graphics Interface,
1992.

